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Restoration of Normoxia by Ozone Therapy May Control
Neoplastic Growth: A Review and a Working Hypothesis
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ABSTRACT

In contrast to normal tissues, tumors thrive in hypoxic environments. This appears to be because they can
metastasize and secrete angiopoietins for enhancing neoangiogenesis and further tumor spread. Thus, during
chronic ischemia, normal tissues tend to die, while neoplasms tend to grow. During the past two decades, it
has been shown in arteriopathic patients that ozonated autohemotherapy is therapeutically useful because it in-
creases oxygen delivery in hypoxic tissues, leading to normoxia. Although several oxygenation approaches have
been tested, none is able to restore normoxia permanently in patients with cancer. We postulate that a prolonged
cycle of ozonated autohemotherapy may correct tumor hypoxia, lead to less aggressive tumor behavior, and
represent a valid adjuvant during or after chemo- or radiotherapy. Moreover, it may re-equilibrate the chronic
oxidative stress and reduce fatigue.
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INTRODUCTION

Tumor hypoxia is a well recognized mechanism of re-
sistance of neoplastic cells to anticancer drugs and ra-

diotherapy and a relevant factor enhancing neoangiogene-
sis, dedifferentiation, and metastasis (Brahimi-Horn et al.,
2001; Bush et al., 1978; Coleman, 1988; Gatenby et al.,
1988; Harris, 2002; Hockel and Vaupel, 2001; Fyles et al.,
2002; Subarsky and Hill, 2003; Vaupel and Hockel; 2000).
Both primary and metastatic tumors thrive in areas where
the average pO2 is lower than in normal tissues and the host
appears unable to mount a reaction to reestablish physio-
logic levels. An anarchic vascularization usually implies
anomalous vessels with variable blood flow, edema, hyper-
coagulability, metastatic progression, and poor prognosis
(Brizel et al., 1996; Denko and Giaccia, 2001; Dvorak, 2003;
Helczynska et al., 2003; Hockel et al., 1996; Subarsky and
Hill, 2003; Young et al., 1988).

In physiologic conditions, at sea level, the pO2 in the alve-
olar space (O2 � 14%) is equivalent to 100 mm Hg (1 at-
mosphere � 760 mm Hg � 101.3 Pa); the pO2 of arterial
blood is about 98 mm Hg, hemoglobin is fully saturated to
oxyhemoglobin (Hb4O8), and �0.3 mL/dL of O2 is solubi-
lized in the plasma. Depending on their metabolism, tissues

(retina, kidney, liver, heart, brain) extract different amounts
of O2 from blood (on average �25%, or 5 mL O2/dL blood)
so that venous blood has a pO2 of about 40 mm Hg, with
Hb4O8 depleted on average of only one molecule of O2.
Thus, the amount of O2 physically dissolved in the plasma
is grossly insufficient for the requirements of the tissues and
the normally necessary 5 mL of O2/dL blood are derived
from deoxygenation of Hb4O8. The crucial point is that, for
reasons mentioned below, erythrocytes of patients with neo-
plastia are unable to deliver more oxygen to the hypoxic tu-
mor tissue.

Although among different tumors and even within the
same tumor there is a marked heterogeneity in terms of O2

supply (Brizel et al., 1996; Coleman, 1988; Denko and Gi-
accia, 2001; Dvorak, 2003; Gatenby et al., 1988; Helczyn-
ska et al., 2003; Hockel et al., 1996; Vaupel and Hockel,
2000; Young et al., 1988), there is a general consensus that
neoplastic tissues prefer a hypoxic and acid microenviron-
ment. The causes seem to be the combination of an aberrant
vascular bed, leaky microvessels, elevated interstitial fluid
pressure, lack of lymphatics, and reduced blood flow. The
average pO2 in tumors is less than one quarter that of nor-
mal cells (2–10 mm Hg versus 40–45 mm Hg). For normal
tissues, hypoxemia represents a consistent metabolic disad-
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vantage, whereas experimental observations led to the con-
clusion that hypoxia is advantageous for growth and ex-
pansion of neoplastic cells (Brizel et al., 1996; Gatenby et
al., 1988; Harris, 2002; Helczynska et al., 2003; Vaupel and
Hockel, 2000; Young et al., 1988). Overexpression of hy-
poxia-inducing factor (HIF)-1-� was detected in the major-
ity of tumor types compared to the respective normal tissues
(Carmeliet et al., 1998; Ryan et al., 1998; Semenza, 2001;
Zhong et al., 1999).

HIF-1 is a heterodimer consisting of the hypoxic response
factor HIF-a-� and the stably expressed aryl hydrocarbon
receptor nuclear translocator (ARNT) or HIF-1-� (Huang
and Bunn, 2003; Semenza, 2001; Semenza, 2003). The
availability of HIF-1 is determined by HIF-1-�, which is
regulated at the protein level in an oxygen-sensitive man-
ner: under hypoxia, HIF-1-� protein is stable, translocates
to the nucleus and, after binding to HIF-1-�, activates gene
transcription of vascular endothelial growth factor (VEGF),
erythropoietin, and glycolytic enzymes that allow neoplas-
tic cells to adapt to hypoxia. In contrast, during normoxia,
HIF-1-� binds to the Von Hippel-Lindau tumor suppressor
protein, which is one of the components of the multiprotein
ubiquitin-E3-ligase complex that targets HIF-1-� for pro-
teosomal proteolysis. Thus, re-establishing normoxia in hu-
man tumors inhibits overexpression of HIF-1-�, enhances
its degradation, and may limit tumor progression and metas-
tasis.

One of the most studied approaches to blocking the ma-
lignant evolution of tumors is to inhibit angiogenesis (Tosetti
et al., 2002). This process is clearly stimulated by hypoxia
(Brahimi-Horn et al., 2001; Carmeliet et al., 1998; Denko
and Giaccia, 2001; Dvorak, 2003; Harris, 2002; Huang and
Bunn, 2003; Ryan et al., 1998; Semenza, 2001; Semenza,
2003; Subarsky and Hill, 2003; Zhong et al., 1999), but a
direct correction of the hypoxic state seems a more straight-
forward method to block cancer progression. If this postu-
lation is correct, we now propose a novel approach for con-
stantly restoring normoxia in all tissues.

IS IT FEASIBLE TO CONSTANTLY
CORRECT HYPOXIA IN 

CANCER PATIENTS?

Two questions arise: would it be possible to induce a con-
stant restoration of normoxia, and how will neoplastic cells
react to a normal O2 tension in vivo.

During the past century several strategies have been pro-
posed for enhancing oxygenation of tumors. The most ob-
vious was breathing pure oxygen, but because of its toxic-
ity, this can only be done for short periods, with only
transitory increases of arterial pO2 (Thomson et al., 2002).
Carbogen inhalation on its own or in combination with other
therapies is practical and useful at high altitudes (Imray et

al., 2003), but has not yet found a definitive role in patients
with neoplasias (Bernier et al., 2000; Falk et al., 1992; Grif-
fin et al., 1996; Inch et al., 1970; Rubin et al., 1979; Sie-
mann et al., 1977; Song et al., 1987). Hyperbaric oxygen
therapy is a procedure by which almost pure medical oxy-
gen is inhaled in an airtight chamber at about 2.6 atmos-
pheres for 2 hours (Bergo and Tyssebotn, 1999; Dische et
al., 1983). During this period the O2 solubilized in plasma
increases up to 5 mL/dL and it becomes sufficient for sat-
isfying tissue requirements so that practically no oxygen
molecule is released by Hb4O8. In this situation neoplastic
tissues may temporarily become normoxic, but only if or-
gan vasoconstriction does not occur (Bergofsky and Bertun,
1966).

Cancer patients are often anemic and recently, in order
to improve therapeutic effectiveness as well as to decrease
fatigue, recombinant erythropoietin has been widely used
(Littlewood et al., 2001; Marrades et al., 1996). Blood trans-
fusion or artificial O2 carriers can be used (Song et al., 1987;
Teicher and Rose, 1984) provided they do not excessively
increase blood viscosity; they only correct hypoxic mi-
croenvironments temporarily. Vasoactive drugs (Bernier et
al., 2000; Honess et al., 1995; Horsman et al., 1989; Sie-
mann et al, 1994; Song et al., 1992) and mild hyperthermia
(Dewey et al., 1977; Griffin et al., 1996; Overgaard et al.,
1995; Song et al., 1996; Song et al., 1997; Valdagni and
Amichetti, 1994) may also be of some help. Although all of
these approaches have some merit, they do not solve the
problem of constantly correcting tumor hypoxia. Coleman
et al. (1988) and later Brown (1999) have proposed that hy-
poxia could be advantageously used to kill tumor cells by
using radiosensitizers, possibly combined with chemother-
apeutic drugs, but this approach is beyond the scope of this
paper.

IS IT POSSIBLE TO CONSTANTLY
IMPROVE OXYGEN DELIVERY TO

ISCHEMIC TISSUES?

By serendipity some 14 years ago one of the authors be-
gan to examine the biological and clinical effects of a gas
mixture composed of 95–98% oxygen and 2–5% ozone on
blood (Bocci and Paulesu, 1990). The classical procedure of
ozonated autohemotherapy (O3-AHT) proposed by Wolff
(1979) has been optimized (Bocci, 2002) and millions of
treatments have been performed with significant clinical ef-
ficacy in vasculopathies, without side effects (Bocci, 2002).
Our typical autotransfusion, quite simple and safe, consists
of 270 mL of blood (anticoagulated with 30 mL 3.8% Na
citrate) exposed to a 200 mL gas volume of the O2–O3 mix-
ture in a sterile, ozone-resistant, glass bottle with an ozone
concentration ranging from 20 to 60 �g/mL per mL of blood
(0.42–1.26 mmol/L). Ozone acts as a real chemical drug, ca-
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pable of activating several biologic mechanisms (Bocci,
1999; Bocci, 2002; Bocci, 2004).

The problem of possible toxicity to blood cell compo-
nents has been extensively appraised and, depending upon
the normal blood antioxidant capacity, the range of the ther-
apeutic window has been determined to lie between ozone
concentrations of 20–80 �g/mL per mL of blood (0.42–1.68
mmol/L). Levels of methemoglobin remain normal, the
hematocrit value and the osmotic fragility do not change,
and the rate of hemolysis is slightly modified (from 0.5%
to 1.2%) (Bocci et al., 1998a; Shinriki et al, 1998). Most
importantly, no damage to erythrocytic enzymes such as
Na/K-ATPase, acetylcholinesterase, superoxide dismutase
(SOD), reduced glutathione peroxidase (GSH-Px), reduced
glutathione reduxase (GSH-Rd), catalase, and glucose-6-
phosphate dehydrogenase (G6PDH) has been noted in blood
exposed to concentrations as high as 80 �g/mL both in pub-
lished data (Cross et al., 1992; Shinriki et al., 1998) and our
unpublished data (Table 1), confirming that the potent an-
tioxidant system of blood adequately protects hemoglobin
and enzymes.

Patients undergoing ozone therapy do not have adverse
effects and most of the patients report a feeling of wellness
and euphoria. It is unfortunate that, owing to a number of
unfavorable circumstances, including misuse of ozone and
a dogmatic assumption that ozone is always toxic, this com-
plementary approach has been either neglected or regarded
with skepticism. This problem has been extensively dis-
cussed (Bocci, 2002) and it is to be hoped that it will un-
dergo objective scrutiny in the near future. Normally a cy-
cle of 14 to 15 twice weekly treatments significantly
improves visual acuity in about 70% of patients with the at-
rophic form of age-related macular degeneration (ARMD)
(Bocci, 2005) and in most of the patients with stage II
chronic limb ischemia (Biedunkiewicz et el., 2004; Giunta
et al., 2001; Mattassi et al., 1987; Rokitansky et al., 1981;
Romero Valdes et al., 1993; Tylicki et al., 2001; Tylicki et
al., 2003; Tylicki et al., 2004). These surprising results
(Bocci, 2002) are due to constantly improving oxygenation
of ischemic tissues and it is worth emphasizing that the re-
sponsible agent is ozone and not the transitory oxygenation
of a small volume of blood.

HOW DOES OZONE ACT?

Ozone dissolves in the water of plasma and immediately
disappears by reacting with organic compounds (including
hydrosoluble and lipophylic antioxidants, and unsaturated
fatty acids), generating a number of messengers acting on
various blood components and producing biologic effects
early, by reactive oxygen species (ROS), and late, by lipid
oxygenation products (LOP). While we were assessing the
range of the therapeutic window, we found that the ozone
concentration must reach a critical threshold to be effective
as otherwise it results only in a placebo effect characterized
by the lack of ROS and LOP. An early effect is due to a sud-
den increase of hydrogen peroxide that switches on a num-
ber of biochemical pathways in erythrocytes, leukocytes,
platelets, and endothelial cells (Bocci, 2002; Stone and
Collins, 2002). The late effects are due to a number of LOP
with a half-life far longer than ROS. Upon blood reinfusion
into the donor, which begins 5 to 10 minutes after blood
ozonation, LOP undergoes extensive dilution, catabolism,
and excretion. Nonetheless the residual LOP will activate en-
dothelial cells and parenchymal cells of several organs,
among which bone marrow is particularly relevant (Fig. 1).

Each day �0.8% of the erythrocyte pool (a fraction cor-
responding to about 40 mL of blood including 2 � 1011, 4-
month old erythrocytes) (Young et al., 1988) is taken up by
erythrocatheretic organs. A rational schedule of ozone ther-
apy envisaged for cancer patients includes 3 sessions weekly
for 6 months, allowing the ozonation of �20 L of blood.
Bearing in mind the axiom that more ozone is not neces-
sarily better (Bocci, 2002), this volume is most likely suf-
ficient for correcting the hypoxic state. Ozone causes two
important modifications, of which the first happens ex vivo
and the second in vivo.

The first occurs in the glass bottle while ozone dissolves
in the water of plasma and generates hydrogen peroxide and
lipoperoxides which behave as secondary messengers: al-
most instantaneously, they enter into the erythrocytes and
activate a number of biochemical pathways. These ROS are
almost immediately reduced (H2O2 to H2O and peroxides
[ROO] to hydroperoxides [ROH]) at the expense of reduced
glutathione (GSH).
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TABLE 1. ENZYME LEVELS (U/G HEMOGLOBIN) IN HUMAN BLOOD AFTER EXPOSING BLOOD SAMPLES (N � 7) TO EITHER O2 OR O3

Treatment SOD GSH-Px GSH-Rd G6PDH

Control 830.2 � 249.6 24.4 � 5.8 2.1 � 0.5 5.2 � 2.4
O2 836.9 � 293.6 19.1 � 5.8 2.0 � 0.5 5.3 � 2.4
O3 20 �g/mL 726.8 � 197.5 25.2 � 6.4 2.0 � 0.6 5.7 � 2.6
O3 40 �g/mL 694.7 � 140.9 25.8 � 6.1 2.1 � 0.5 5.2 � 2.7
O3 80 �g/mL 670.8 � 185.5 27.2 � 6.1 2.1 � 0.4 5.6 � 3.0

SOD, superoxide dismutase; GSH-Px, reduced glutathione peroxidase; GSH-Rd, reduced glutathione reductase; G6PDH, glucose-6-
phosphate dehydrogenase. Values represent mean � standard deviation. In comparison to oxygen, the ozonated samples did not show
significant variations.



While GSH-Rd utilizes the coenzyme nicotinamide ade-
nenine dinucleotide phosphate in reduced form (NADPH)
to recycle GSSG to the original level of GSH, the oxidized
NADP is reduced after the activation of the pentose phos-
phate pathway, of which G6PDH is the key enzyme. Gly-
colysis is accelerated, with a consequent increase of ATP
levels. Moreover, for a brief period, the reinfused erythro-
cytes enhance the delivery of oxygen into ischemic tissues
because of a shift to the right of the oxygen-hemoglobin dis-
sociation curve, as a result either of a slight decrease of in-
tracellular pH (Bohr effect) or/and an increase of 2,3-diphos-
phoglycerate (2,3-DPG) levels.

The second and more important modification occurs in the
bone marrow, when submicromolar amounts of LOP present
in the reinfused blood, acting as a weak stress factor, are able
to influence the differentiation of the erythroblastic lineage.

It is emphasized that each O3-AHT represents a calcu-
lated, very transitory oxidative stress that, by activating the
adaptive mechanism, results in the generation of erythro-
cytes with improved biochemical characteristics. These su-
pergifted erythrocytes, as we called them, due to a higher
content of 2,3-DPG and antioxidant enzymes, become able
to deliver more oxygen into ischemic tissues (Bocci, 2002;
Clavo et al., 2003; Giunta et al., 2001; Mattassi et al., 1987;
Rokitansky et al., 1981; Romero Valdes et al., 1993; Tylicki
et al., 2001; Tylicki et al., 2003; Tylicki et al., 2004). The
consequence of repeated treatments, depending upon the
volume of ozonated blood, the ozone concentration, and the
schedule, is that after a few initial treatments, a cohort of
supergifted erythrocytes will enter the circulation daily and
will relentlessly substitute for old erythrocytes generated be-
fore the therapy. This means that, during prolonged ozone
therapy, the erythrocyte population will include not only
cells of different ages but, most importantly, erythrocytes
with different biochemical and functional capabilities.

In 4 patients with ARMD, after a short cycle of 14 O3-AHT
treatments (in which �3.8 L of blood was ozonated over 7
weeks), density-gradient separation of old and young erythro-
cytes (Micheli et al., 1985) showed a marked increase of
G6PDH in the young erythrocytic fraction generated during
the course of ozone therapy (Micheli et al., in preparation)
(Table 2). Other relevant biochemical changes such as gly-
colysis activation with increased ATP and 2,3-DPG levels, par-
ticularly in patients with low basal levels, have been measured
in erythrocytes at the end of the cycle (Bocci, 2002; Mattassi
et al., 1987; Rokitansky et al., 1981). While the enzymatic ac-
tivity does not change during the ozonation procedure, it does
significantly increase in vivo after a therapeutic cycle: we have
found that GSH-Px, GSH-Rd, GSH-Tr, and SOD increase by
210%, 147%, 164%, and 141%, respectively, amply confirm-
ing previous data reported by Hernandez et al. (1995).
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FIG. 1. After reinfusion of ozonated blood into the donor and
dilution in the blood pool, lipid oxygenation products (LOP) will
be distributed in all organs. Besides catabolism and excretion via
bile and urine, traces of LOP will act as bioregulators eliciting a
number of biological effects. CNS, central nervous system; GIT,
gastrointestinal tract; Malt, mucosa-associated lymphoid tissue.

TABLE 2. EVALUATION OF G6PDH ACTIVITY IN TOTAL, YOUNG, AND OLD RED BLOOD CELLS (RBC) IN BLOOD SAMPLES FROM 4
PATIENTS WITH AGE-RELATED MACULAR DEGENERATION, BEFORE AND AFTER AN OZONE THERAPY CYCLE OF 13 TREATMENTS

Young Old
Total RBC Young RBC Old RBC RBCb (%) RBCb (%)

Before treatment 356.8 � 90.7 550.3 � 157.5 310.7 � 127.3 3.1 � 2.8 96.9 � 2.8
(n � 4)

After treatment 406.2 � 40.4 748.2 � 181.9 434.8 � 86.7 3.4 � 3.0 96.6 � 3.8
(n � 4)

aG6PDH activity expressed as nmoles/h/mg hemoglobin in whole erythrocyte population and in young and old fractions before and
after 13 O2/O3 treatments.

bPercentage of young (“light”) and old (“heavy”) erythrocytes obtained from whole blood by isopycnic centrifugation.
G6PDH, glucose-6-phosphate dehydrogenase.
Values represent mean � standard deviation.

G6PDH activitya



That ozone can induce the release of erythrocytes with
improved functional activity is not surprising, as the phe-
nomenon of adaptation to chronic oxidative stress (De Maio,
1999; Jolly and Marimoto, 2000), also defined as oxidative
preconditioning (Barber et al., 1999; Bocci, 1996a; Bocci,
1996b; Kume et al., 1996; León et al., 1998) or hormesis
(Calabrese, 2002; Goldman, 1996), implies that the repeated
treatments induce the synthesis of several oxidative stress
proteins among which heat shock protein 32, identical to
heme-oxygenase-1 (HO-1), is a prototypical example. This
happens in all organisms from plants to humans, and has
also been termed ozone tolerance (Bocci et al., 1999; Burkey
and Eason, 2002; Sharma et al., 1996). Our calculated ther-
apeutic stress on blood ex vivo must be clearly distinguished
from the lifelong, endogenous, oxidative stress due to oxy-
gen, because, although it seems a paradox, ozone therapy
can upregulate the antioxidant defenses.

On the basis of the clinical improvement in patients with
ARMD (Bocci, 2005) and chronic limb ischemia (Clavo et
al., 2003; Giunta et al., 2001; Mattassi et al., 1987; Romero
Valdes et al., 1993; Tylicki et al., 2001) after only 2 months
of therapy, it is likely that 3 or 4 months of therapy may
bring about normal oxygenation of the neoplastic tissues.
This possibility is supported by recent experimental find-
ings that indicated that, after ozone therapy, oxygenation in-
creases, particularly in the most hypoxic tumors (Clavo et
al., 2004a; 2004b).

The treatments need to be continuously maintained but
this is not a problem given the excellent patient compliance
shown in other diseases (Bocci, 2002). ROS and LOP not
only increase erythrocytic function (Bocci et al., 1998a) but
activate leukocytes (Bocci et al., 1993a; 1993b; Bocci et al.,
1994; Bocci et al 1998b; Paulesu et al., 1991), platelets
(Bocci et al., 1999; Valacchi and Bocci, 1999), and en-
dothelial cells (Valacchi and Bocci, 2000). This multidirec-
tional and simultaneous activation leads to an increased re-
lease of NO, adenosine, and autacoids, and contributes to
improved tissue vascularization (Jia et al., 1996). HO-1 will
enhance heme breakdown yielding a higher level of biliru-
bin (a potent lipophylic antioxidant like a-tocopherol) and
CO (Bak et al., 2002; Dore, 2002; Lee and Chau, 2002; Sny-
der and Baranano, 2001; Zuckerbraun and Billiar, 2003).
HO-1 indirectly reduces vascular constriction because it sup-
presses the gene expression of endothelin-1 and inhibits the
proliferation of smooth muscle cells (Duckers et al, 2001;
Morita and Kourembanas, 1995). It has been shown that
traces of CO cooperate with NO in favoring vascular relax-
ation (Bak et al., 2002).

Reinfusion of ozonated blood does not involve intra-
venous infusion of gas, which has been prohibited since
1984, because oxygen can cause a deadly embolism (Ja-
cobs, 1982). On the other hand, ozone reacts instanta-
neously and disappears: the reaction cascade generates the
compounds responsible for eliciting a variety of biologic
effects that allow considering ozone as a multipotent

bioregulator. Briefly expanding this concept, the result that
ozone could directly and selectively inhibit neoplastic cells
growth (Sweet et al., 1980) is irrelevant in vivo unless
ozone is directly injected into a neoplastic nodule, which
is a rare event. In addition to the normalization of hypoxia,
ozone therapy can display other interesting biologic effects
that may enhance the therapeutic result. First, reinfused
LOP are heterogeneous but include cytotoxic aldehydes
such as malonyldialdehyde and 4-hydroxy-2,3-alkenals
(Esterbauer et al., 1991). These compounds undergo ex-
tensive dilution and are partly excreted and partly catabo-
lized by enzymes such as GSH-Tr and ALDH. However,
they also bind to cells and it is possible that neoplastic cells
are sensitive to LOP that nonetheless must only reach sub-
micromolar levels to avoid toxic effects in normal cells.
Second, in a series of papers (Bocci et al., 1993a; Bocci et
al., 1993b; Bocci et al., 1994; Bocci et al., 1998b; Paulesu
et al., 1991), we showed that ozone, via the transitory ac-
tion of hydrogen peroxide, acts as a mild inducer of cy-
tokines in leukocytes and therefore primes lymphocytes
and monocytes by releasing cytokines in lymphoid mi-
croenvironments, and may slowly bring about a concerted
activation of the immune system usually suppressed by tu-
mor growth. This is an interesting possibility because an
endogenous and balanced cytokine production is concep-
tually more effective and free of toxicity than the exoge-
nous administration of a single cytokine (Bocci, 1988;
Bocci, 1998).

In October 2003 we initiated an open study applying
ozone therapy to chemotherapy-resistant cancer patients.
The initial observation was that patients with a Karnofsky
performance status �40% who underwent excessive treat-
ments, in spite of excellent compliance, continue to show
disease progression and die in a few weeks. On the other
hand, after 30 to 45 treatments, patients with a Karnofsky
status �70%, even with diffused metastasis (usually liver or
lungs), report a net improvement of their quality of life. Al-
though a definitive conclusion, based upon evaluations of
objective parameters, cannot be achieved before an exten-
sive study on the latter category of patients, a preliminary
study on advanced head and neck tumors supports our con-
tention (Clavo et al., 2004b).

In contrast to the dogmatic assertion that ozone is always
toxic, after three decades of correct ozone therapeutic prac-
tice in Europe, it can be affirmed that properly used ozone
does not produce any adverse effects but actually improves
the quality of life of the patient with cancer. The mecha-
nisms producing the state of wellness and euphoria are not
yet experimentally clear but a complex hormonal and neu-
rotransmitter modification is likely to occur during the “ther-
apeutic shock” due to ozone action (Bocci, 2002). Conven-
tional cancer treatments often cause fatigue (Gutstein, 2001;
Servaes et al., 2002) and attenuating this serious symptom
may help to improve the psychologic, behavioral, and meta-
bolic state of the patient.
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CONCLUSIONS

In order to render the tumor microenvironment normoxic,
several approaches have been pursued; although they are
correct in theory, they are not practical and above all tran-
sitory. Although the use of oxygen-ozone therapy in
metastatic cancer was postulated five years ago (Bocci,
1998), it has been neglected by oncologists and we could
not perform a study. However, the clinical application of
ozone therapy in ischemic vasculopathies (Giunta et al.,
2001; Mattassi et al., 1987; Rokitansky et al., 1981; Romero
Valdes et al., 1993; Tylicki et al., 2001) has shown that it
can permanently correct the hypoxia in ischemic tissues.
Anecdotal reports have claimed excellent results in cancer
but unpublished results cannot be assessed and remain val-
ueless. We have garnered considerable experience with the
effect of short cycles of O3-AHT in ARMD (Bocci, 2005)
and vasculopathic patients. Laboratory evaluation has shown
that ozone therapy with time can modify the biochemistry
of mature circulating erythrocytes. This is not due to the
very high but absolutely transitory oxygenation of blood ex
vivo, but exclusively to the reaction of ozone with blood
components. The novel point to bear in mind is that ROS
and then LOP messengers, generated during blood ozona-
tion, reach all microenvironments after blood reinfusion into
the donor: In the bone marrow, they influence the differen-
tiation of the erythroblastic lineage, so that cells mature with
an improved biochemical machinery that will improve their
function in the circulation and will result in increased oxy-
gen delivery into ischemic tissues. If we want to change the
erythrocytic population permanently, we have to program
an intensive cycle of at least 6 months, followed by main-
tenance therapy, to preserve the benefit, as we have observed
in ARMD patients (Bocci, 2005). After each O3-AHT a new
cohort of young erythrocytes will replace old and inefficient
cells. The progressive substitution of a poorly functioning
cell population with an increasing majority of supergifted
erythrocytes may be capable of normalizing oxygen levels
in neoplastic areas.

Normoxia, by inhibiting HIF-1 activity, may reduce tu-
mor growth and metastasis (Semenza, 2003). LOP, by in-
teracting with the endothelium, enhances NO and NO-thiol
formation, which will further increase the oxygen supply by
improving the tumor microcirculation. Upregulation of 
HO-1, which is the norm during ozone therapy, will also in-
crease the release of traces of CO that act in concert with
NO. The generalized improvement of metabolism, the mild
stimulating effect on the immune system, and a positive ef-
fect on neurotonic neurotransmitters and hormone secretion
may constitute a great help for patients with cancer who are
often plagued by fatigue. In contrast to the opinion of those
scientists who, without any direct experience, claim that
ozone is toxic, it can be stated that properly performed ozone
therapy carried out for years in thousands of patients has not
yielded any acute or chronic side effects. Ironically for the

detractors, most patients report a feeling of wellness and are
well compliant.

In conclusion, it has been proved that ozone therapy can:

• Improve blood circulation and oxygen delivery to isch-
emic tissues

• Correct the chronic oxidative stress by upregulating the
antioxidant system

• Induce a mild activation of the immune system
• Procure a state of wellbeing in patients.

Can ozone therapy be useful in metastatic cancer either
as the last resort or as a complementary therapy during
chemo- or radiotherapy? Only unbiased, randomized (in
comparison to the best orthodox therapy) clinical studies for
several solid tumor types carried out in several oncologic
treatment institutions can answer this question. Despite our
efforts, so far conventional oncologists have disregarded this
approach. This seems unfair for the patient because
chemotherapy is not always curative and several other ap-
proaches, although promising and fashionable, such as gene
therapy, cancer vaccines, angiogenesis-inhibitors, telom-
erase-inhibitors, and matrix metalloproteinase-inhibitors
have not yet yielded a real advantage.

An exciting aspect of ozone therapy is the range of bio-
logic effects induced by the interaction of ozone messengers
with many targets, first in blood ex vivo and then in many
organs after reinfusion. This novel therapeutic approach may
profoundly modify the biochemistry and behavior of neo-
plastic cells and a good test will be the evaluation of HIF-
1-� that, if down-regulated, may inhibit neoangiogenesis
and further metastasization. In spite of the skepticism of oth-
ers, the time has come to scientifically evaluate the ability
of ozone therapy to stabilize tumor progression and improve
the quality of life of patients with neoplastic diseases.
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